

ПУСКАТЕЛЬ БЕСКОНТАКТНЫЙ РЕВЕРСИВНЫЙ

ПБР-2М ПБР-2М1

ООО «Поволжская электротехническая компания»

Почтовый адрес:

Российская Федерация, Чувашская Республика, 428000, г. Чебоксары, а/я 163

Тел./факс: (8352) 57-05-16, 57-05-19

E-mail: info@piek.ru *Caŭm:* www.piek.ru

1. ВВЕДЕНИЕ

Настоящее техническое описание и инструкция по эксплуатации предназначено для изучения бесконтактного реверсивного пускателя ПБР-2М (в дальнейшем – пускатель) и содержит описание устройства и принципа действия, а также технические характеристики и другие сведения, необходимые для правильного транспортирования, хранения и эксплуатации пускателя.

2. НАЗНАЧЕНИЕ

- 2.1.Пусктель предназначен для бесконтактного управления электрическими исполнительными механизмами по ГОСТ 7192 с однофазным конденсаторным электродвигателем и имеет две модификации: ПБР-2М и ПБР-2М1. Пускатель ПБР-2М для механизмов, имеющих электромагнитный тормоз, ПБР-2М1 для механизмов, имеющих механический тормоз.
- 2.2. Пускатель предназначен для эксплуатации в условиях, оговоренных в табл. 1.

Таблица 1

Условия эксплуатации	Исполнение УХЛ 4.2
1. Температура, ^о С	от 5 до 50
2. Относительная влажность, % при температуре, °C	от 30 до 80 35
3. Вибрация: частота, Hz	до 25
амплитуда, mm	до 0,1
4. Магнитные поля постоянные или переменные 50 Hz,	
напряженность, А/т	до 400

3. ТЕХНИЧЕСКИЕ ДАННЫЕ

- 3.1. Параметры питания: однофазная сеть переменного тока $(220^{+22}_{-33})V$, частотой (50 ± 1) Hz.
- 3.2.Виды входных сигналов, пределы их изменения, номера входных контактов приведены в табл. 2.

Номера	Входные сигналы	Пределы изменения среднего		Потребляе-
входных		значения напряжения на		мый или
контак-		входных контактах		KOM-
тов		включение	выключение	мутируемый
				ток входной
				цепи
7-8	Среднее значение			
8-9	двухполупериодног			
	о выпрямленного			
	синусоидального			
	напряжения	(24 <u>+</u> 8)V	0-2V	
7-10	Состояние	0-3V	(24 <u>+</u> 4)V	Не более
9-10	контактных или		(амплитудное	50mA
	бесконтактных		напряжение 50V	
	ключей			

- 3.3. Входное сопротивление пускателя не менее 750 Ω .
- 3.4. Максимальный коммутируемый ток 4 А.
- 3.5. Динамические характеристики пускателя:
- 1) быстродействие (время запаздывания выходного тока при подаче и снятии управляющего сигнала) не более 25 mS;
- 2) разница между длительностями входного и выходного сигналов не более 20 mS;
- 3.6. Полная мощность, потребляемая пускателем, не более 7 V•A
- 3.7. Напряжение источника питания цепей управления 22-26 V (среднее значение двухполупериодного выпрямленного тока).
- 3.8. Норма средней наработки на отказ с учетом технического обслуживания, регламентируемого настоящим техническим описанием 200000h.
 - 3.9. Полный средний срок службы пускателя 10 лет.
 - 3.10. Масса пускателя не более 4,0 kg.
 - 3.11. Габаритные и установочные размеры пускателя приведены на рис.
- 3.12. Пускатель соответствует ІУ группе исполнения по устойчивости к электромагнитным воздействиям в электромагнитной обстановке средней тяжести и критерии качества функционирования В по ГОСТ Р 50746-95 и должен применяться в системах нормальной эксплуатации, не влияющих на безопасность.

4. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

4.1. Конструкция.

1.

Пускатель состоит из платы, кожуха и передней панели.

На передней панели расположены две клеммные колодки для подключения пускателя к внешним цепям, а также винт заземления. Клеммные колодки закрываются крышками. На плате устанавливаются элементы схемы пускателя. Плата вставляется в кожух и закрепляется двумя винтами. Пускатель рассчитан на установку на вертикальной или горизонтальной плоскости. Положение в пространстве – любое. Крепление пускателя осуществляется двумя болтами М6, которые установлены на задней стенке кожуха. Варианты установки показаны на рис.1.

4.2. Принцип работы.

Схема пускателей приведена на рис. 2. и состоит из схемы управления бесконтактными ключами, силовой схемы, коммутирующей напряжение питания механизма, и источника питания для дистанционного управления пускателем.

В схеме управления резисторы R1,R2 задают входное сопротивление пускателя. Конденсаторы C1, C2 и диоды V2, V3 сглаживают пульсацию управляющего сигнала. Транзистор V8, и резисторы R4, R5 и выпрямительный мост V9 исключают включение блокинг-генераторов при подаче сигнала управления на оба входа.4.3. Защита пускателя от коротких замыканий.

Стабилитроны V6,V7 предназначены для защиты транзистора V8 от пробоя при перегрузке пускателя по входному сигналу.

Блокинг-генераторы, формирующие импульсы управления триаками, состоят из транзисторов V15- V17[V15, V16], диодов V12 - V14 [V10 -V13],

V18 - V20 [V18, V19], трансформаторов T1 – T3 [T1, T2], конденсаторов C4 – C6 [C4, C5], резисторов R8 –R16.

8. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ.

- 8.1. Пускатели в заводской упаковке должны храниться в отапливаемых помещениях при температуре воздуха от 1 до $40\,^{\circ}$ С при относительной влажности от 30 до $80\,^{\circ}$. Воздух в помещении не должен содержать пыли или примесей агрессивных паров и газов.
- 8.2. Транспортирование пускателей в транспортной упаковке предприятия-изготовителя допускается любым видом транспорта с защитой от дождя и снега на любое расстояние без ограничения скорости.

Транспортирование самолетами должно производиться в отапливаемых герметизированных отсеках. Температура окружающей среды – от минус 50 до плюс 50 $^{\circ}$ С при относительной влажности до 98% без конденсации влаги. Время транспортирования не более 5 месяцев.

Восстановление пускателей после отказов обеспечивается проведением текущего ремонта в соответствии с настоящей инструкцией.

Вниманию потребителей! Объединение непрерывно проводит работы по совершенствованию конструкции приборов, поэтому некоторые изменения в конструкции и комплектующих изделий в инструкции могут быть не отражены.

7. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

7.1. Причинами выхода из строя пускателя могут быть: обрыв цепи напряжения питания, нарушения контактов в схеме из-за обрывов, особенно в местах пайки, выход из строя полупроводниковых приборов, триаков и другие внутренние повреждения. При поиске любой неисправности, прежде всего, надо тщательно осмотреть весь прибор, особенно места паек.

Отыскание неисправности пускателей необходимо производить в лабораторных условиях в схемах проверки (рис. 3, 4).

Восстановление пускателей после отказов обеспечивается проведением текущего ремонта в соответствии с настоящей инструкцией.

7.2. Перечень возможных неисправностей приведен в табл. 3.

Наименование	Вероятная	Способы устранения	Приме-
неисправности,	причина	3 1	чание
внешнее	-		
проявление и			
дополнительные			
признаки			
1. Не работает	Нарушение	Проверить цепи и устранить	
электродвигатель	контакта в	неисправность.	
исполнительного	силовых цепях.		
механизма при			
замыкании	Неисправность во	Проверить, подается ли	
контактов 7-10,	входных цепях.	напряжение управления на	
либо 8-10 и		вход генератора. Заменить	
включенном		неисправные элементы.	
напряжении		_	
питания.	Неисправность	Проверить наличие	
	блокинг-	переменного напряжения на	
	генератора.	коллекторе блокинг-	
		генератора. Заменить	
		неисправные элементы.	
		Проверить целостность	
	Обрыв в обмотках	обмоток и наличие	
	импульсивных	управляющих сигналов на	
	трансформаторов.	триаках. При необходимости,	
	транеформатород.	заменить или перемотать	
		трансформаторы.	
		Проверить исправность и	
	Неисправность	заменить сгоревшие триаки.	
	триаков.		
2.Сработал тормоз	Пробой триака	Заменить неисправный	
исполнительного	V23.	триак V23.	
механизма при			
отсутствии			
входного сигнала и			
включенном			
напряжении			
питания			

В силовой схеме триаки V21- V23[V21, V22]коммутируют напряжение, от которого осуществляется электрическое питание механизмов, а конденсаторы C7 -C9 [C8,C9] и резисторы R17 - R19 [R18,R19] улучшают условия коммутации. Дроссели L1 - L3[L1,L2] ограничивают величину ударного тока при аварийных перегрузках триаков.

Источник питания цепи дистанционного управления состоит из трансформатора E4 и выпрямительного моста V1. Выход источника с отрицательным потенциалом соединен с клеммой 10 (выход "Д"), а с положительным – с клеммой 8 (выход "Ср").

Входной сигнал управления пускателем – постоянное напряжение (24 \pm 6) V – подается на клеммы 8 – 7 или 8 –9. На клемму 8 (вход "Ср") подается положительный потенциал, на клеммы 7 (вход "М"), или 9 (вход "Б")- отрицательный потенциал сигнала управления.

Обозначения "М" (меньше) и "Б" (больше) приняты условно.

В исходном состоянии (входные сигналы отсутствуют) напряжения питания на схеме управления нет, триаки закрыты.

При подаче управляющего сигнала на клеммы 8-7 (8-9) заряжаются конденсаторы С1 (С2) и С3.

Напряжение с конденсатора C3 через выпрямительный мост V9 подается на вход эмиттерного повторителя, выполненного на транзисторе V8

Напряжение с выхода эмиттерного повторителя подается на блокинг-генераторы, выполненные на транзисторахV15 [V16], V17 [V15,(V16)] и трансформаторах Т1 (Т20, Т3 [Т1 (Т2)]. Блокинг-генераторы формируют импульсы, отпирающие триаки V22, V21 и V23[V24 (V21)]. Питающее напряжение с клеммы 1 через открытые триаки V23, V22 (V21) [V22 (V21)] подается на выход пускателя клемму 3 (5).

Примечание. В скобках указаны позиции элементов ПБР-2М1.

4.3. Защита пускателя от коротких замыканий.

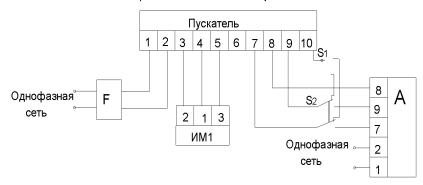
Если по условиям эксплуатации возможны короткие замыкания на выходе пускателя, то в цепях питания пускателя должны быть установлены предохранители типа ПК45-5A, включенные в провода, подходящие к клеммам 1 и 2.

5. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- 5.1. Работы по монтажу и эксплуатации пускателя разрешается выполнять лицам, имеющим допуск к эксплуатации электроустановок.
- 5.2. Пускатель должен быть заземлен проводом. Заземляющий провод крепится к специальному болту на корпусе пускателя.
- 5.3. Все работы по монтажу пускателя производить при полностью снятом напряжении питания. При этом на распределительном щите, питающем пускатель, необходимо вывесить табличку с надписью «НЕ ВКЛЮЧАТЬ РАБОТАЮТ ЛЮДИ!»

6. ПОДГОТОВКА К РАБОТЕ

6.1. При распаковке пускателя обратите внимание на состояние лакокрасочного покрытия и убедитесь в отсутствии механических повреждений корпуса, клеммной колодки.


При наличии механических повреждений корпуса (вмятин, трещин, следов коррозии и других эффектов) пускатель следует считать неисправным. Дальнейшей проверке и включению в сеть такой пускатель не подлежит.

- 6.2. При внесении пускателя с мороза в теплое помещение оставьте пускатель в заводской упаковке в помещении на 8-10h для того, чтобы пускатель постепенно принял температуру окружающего воздуха.
- 6.3. Для проверки пускателей соберите схему согласно рис.3 или рис.4.. Включите автомат *F*, переведите переключатель S1 в положение 3, выходной орган механизма должен схему, перевести переключатель S1 в положение 1, выходной орган механизма должен прийти в движение, переведите переключатель S1 в положение 3, выходной орган механизма должен изменить направление вращения. Обесточьте пускатель.

К рис. 2

	К рис. 2	1	T I
Поз.	Наименование	Кол	Приме-
обозначение			чание
	Конденсаторы		
01.00			
C1,C2	K73-17a-63V-4,7μF ±10%	2	
C3	$K73-17B-250-160V-0,47\mu F \pm 10\%$	1	
C4C6	K73-17 _B -160-160V-0,1μF ±10%	3	
	l ' '	_	π
C7C10	K73-17в-630-160V-0,22μF ±10%	4	Доп.замена
			МБГЧ-1-2-
			$500V-0,25\mu F$
			±20%
	Резисторы		
R1, R2	C2-33H-2-1,5кΩ± 10% -A-Д	2	
· · · · · · · · · · · · · · · · · · ·			
R3	C2-33H-0,5-91Ω± 10% -A-Д	1	
R4, R5	C2-33H-0,5-30кΩ± 5% -Д	2	
Ř6	С2-33H-0,5-560Ω± 5% -А-Д	1	
_			
R7	С2-33H-0,5-8,2кΩ± 10% -А-Д	1	
R8	С2-33H-0,5-1,3кΩ± 10% -А-Д	1	
R9, R10	C2-33H-0,5-2кΩ± 5% -A-Д	2	
R11R13	С2-33H-0,5-180Ω± 5% -А-Д	3	
R14, R15	C2-33H-0,5-51кΩ± 5% -Д	2	
R16	С2-33H-0,5-62кΩ± 10% -Д	1	
R17R19	С2-33H-2-200Ω± 10% -А-Д	3	
V1	Выпрямительный мост КЦ407А	1	
V2, V3	Диод КД102А	2	
V4, V5	Диод КД522Б	2	Доп.замена
' ', ' '		-	КД102А
	Стабилитрон КС515		
V6, V7	Стаоилитрон кС515	2	
V8	Транзистор КТ315В	1	
-	Выпрямительный мост КЦ407А		
V9	Диод КД522Б	1	
V10V14	A.10A 140222	5	Доп.замена
			КД102А
771 F 771 F		_	
V15V17	Транзистор КТ608Б	3	
V18V20	Диод КД522Б	3	Доп.замена
			КД512A
V21, V22	Terror MAC 002A9	2	кдотим
	Триак МАС 223А8		_
V23	Триак МАС 223А8	1	Доп.замена
			TC122-25-5-
			1-У2
T1 TO	Трансформатор импульсный 6.170.622	2	
T1T3		3	Ha 220 V
T4	Трансформатор 6.170.094-12	1	Ha 240 V
T4	Трансформатор 6.170.094-14	1	118 240 V
L1L3	Дроссель 6.271.043	3	
	Колодка клеммная 5.143.561-04	1	
X1	Колодка клеммная 5.143.561-10		
X2	полодка клеминая э.14э.эо1-10	1	
· · · · · · · · · · · · · · · · · · ·	ı	·	1

Рис. 3. Схема проверки пускателей ПБР - 2М1 с механизмами, имеющими механический тормоз

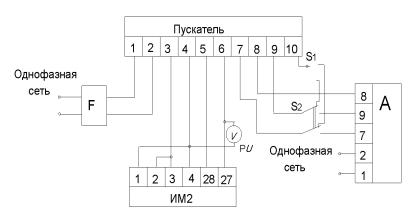


Рис. 4. Схема проверки пускателей ПБР - 2М с механизмами, имеющими электромагнитный тормоз

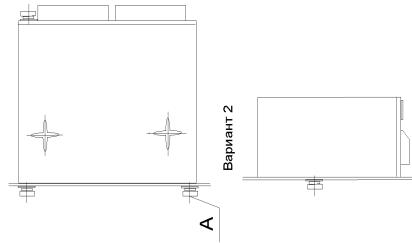
F- автомат защиты типа АП-50 3MT

 S_1 - переключатель дистанционного управления

ИМ1 - исполнительный мезанизм МЭП (МЭО,МЭМ) с механическим тормозом и двигателем ДАУ-П (ДАУ-С) ДСР

ИМ2 - исполнительный механизм МЭО с электромагнитным тормозоми двигателем ДАУ (ДАУ-С)

А- регулирующий прибор типа РП4-М1(РБИ, РП-2) Р*U*- волтметр *Э*365-1 0-300V кл.1


Рис.1. Габаритные и установочные размеры

ПБР-2М, ПБР-2М1

прибора в пространстве - любое Варианты установки, положение

196±3

12,5

 90 ± 1.5

Длина болта А (без головки) должна быть не более 14мм Внимание!

Рис. 1. Схема электрическая принципиальная пускателя ПБР-2М

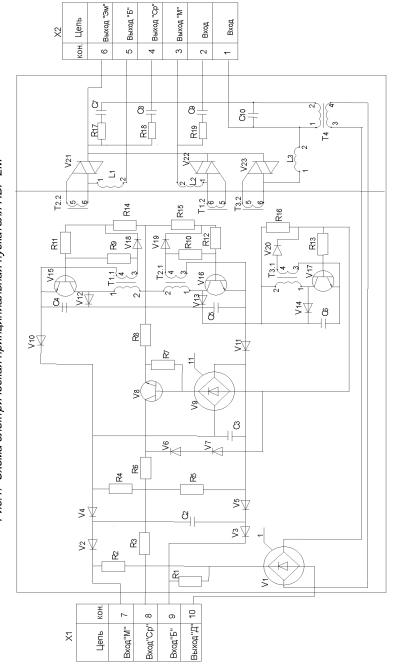
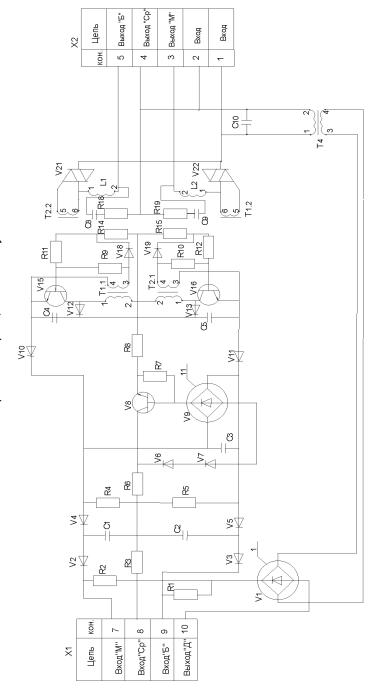



Рис.2б. Схема электрическая принципиальная пускателя ПБР-2М1

